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This paper presents a modified version of the Galerkin method in which the
original bilinear form and the corresponding linear functional are perturbed by
means of a smoothing parameter. Although, as Cea's lemma shows, it is not
possible to improve the rate of convergence, we prove that our scheme provides a
smaller error bound than the usual Galerkin solution. Also, a procedure to obtain
an approximation of the projection of the exact solution, which gives a better rate
of convergence than the Galerkin solution, is suggested. © 1990 Academic Press, Inc.

1. INTRODUCTION

Let H be a Hilbert space with inner product <.,.) H and corre­
sponding norm 11·11 H'

Let B: H x H ~ R be a continuous H-elliptic bilinear. form. Let M and iJ(

denote the constant of continuity and the constant of coerciveness of B,
respectively, i.e.,

and

IB(v, w)1 ~M Ilvll H IlwlI H ,

r:t. II v II ~ ~ B(v, v),

Vv, WEH

VVEH.

(1.1)

(1.2)

Also, let f: H ~ R be a continuous linear form. We are interested in
finding U E H such that

B(u, v) = f( v), VVEH. (1.3)

It IS well known that under the above assumptions, the Lax-Milgram
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lemma (cf. [8, Theorem I.1.3J) provides the existence and uniqueness for
the solution of (1.3).

Now, let {Shh > 0 be a parametric family of finite dimensional subspaces
of H. We consider the problem: Find uhE Sh such that

B(uh, v) = f(v), (1.4)

It is easily seen that (1.4) has one and only one solution. Moreover, the
Cea's lemma (cf. [8, Theorem 2.4.1J) gives the following error estimate

(1.5)

which shows that the problem of estimating the error II u - uh II H is reduced
to a problem in approximation theory.

An important remark is that if B is symmetric, then an equivalent
formulation to (1.4) is given by

Ilu - uhllE= min Ilu- vilE,
veSh

(1.6)

where 11·11 E is the energy norm induced by the inner product B. Further­
more, by using (1.6), we obtain instead of (1.5)

(1.7)

Since (Ll) and (1.2) imply a~M, we can see that (1.7) is better than
(1.5).

2. THE SMOOTHING SOLUTION

Let u and uh be the solutions of (1.3) and (1.4), respectively. Let gEH'
so that

'ivEH. (2.1 )

By following the same ideas of [9J, for a given parameter l/J > 0, we
consider the problem: .Find uh(l/J) E Sh such that

B(Uh(l/J), v) + l/J < Uh(l/J), v> H= f(v) + l/Jg(v),

We have the following result

(2.2)
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PROPOSITION 2.1. For any l/J > 0, there exists a unique Uh( l/J) solution of
(2.2). Moreover

(2.3 )

Proof Let a: H x H -t R be the bilinear form

a(v, w)=B(v, w)+l/J(v, W)H

and let F: H -t R be the linear functional

F(v) = f(v) + l/Jg(v).

We have clearly

la(v, w)1 ~ IB(v, w)1 + l/J I(v, w)HI ~ (M + l/J) IlvllH Ilwli H

and

a(v, v)=B(v, v)+l/J(v, V)H?o(rt+l/J) Ilvll~.

Since a(u, v) = F(v) for all v E H, a direct application of Lax-Milgram and
Cea's lemmas complete the proof. I

The unique Uh(l/J) E Sh solution of (2.2) will be called the smoothing
Galerkin solution with parameter l/J.

Now, let Ph be the projection of H on sh, i.e.,

(2.4)

Then, we obtain

PROPOSITION 2.2. For every l/J > 0, Uh(l/J) satisfies

(2.5)

where

(2.6)

Proof It follows easily from (2.2) and the fact that (u-u h , v> H=O,
'VVESh

• I
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Since M is necessarily larger than a, we deduce that for any positive rjJ
the constant term in (2.3) is smaller than that of (1.5). In other words, the
approximation to U given by Uh(rjJ) provides a better error bound than that
given by the usual Galerkin solution uh

. In order to make this fact even
more clear, we note that, although (M + rjJ )/(a + rjJ) is always greater than
1, we can make this quotient arbitrarily close to 1 by choosing rjJ
appropriately. It is easily seen that for any (j > 0

rjJ M - a((j + 1)
~ (j

is a necessary and sufficient condition to obtain

M+rjJ
--,-I. ~ 1+ (j.
a+'I'

For instance, (j = 1 requires rjJ ~ M - 2a which gives

M+rjJ
--,I. ~2=0(1).
a+'I'

In this case, we can write

i.e., the error in the approximation of uh(rjJ) to U is at most two times the
smallest error guaranteed by the subspace Sh.

The importance of this is evident in cases in which the constant of
coerciveness a is small. Under this situation it is very clear, at least in terms
of a priori estimates, the superiority of this smoothing scheme versus the
usual Galerkin scheme which, as shown in (1.5), gives an approximation of
0(1/a).

Nevertheless, as we can see from (2.1)-(2.2) and (2.5)-(2.6), it is
impossible to obtain explicitly uh(rjJ), unless we know either the exact
solution U or its projection Uh' Therefore, in Section 3 we will address the
question of how to choose an approximation for uh(rjJ).

From now on, {e 1, ..., eN} will denote a basis of the subspace Sh.

PROPOSITION 2.3. Let C and F be the stiffness matrix and the load
vector, respectively, associated with the Galerkin solution uh

, i.e.,

J;:=J(e;).



GALERKIN METHOD WITH SMOOTHING 375

(2.7)

Then,for any t/!>O, uh(t/!) is given by

N

Uh(t/!) = L zit/!)ej,
j~ 1

where Z(l{t):= (Zl(l{t), ..., zN(l{t)f is obtained from the system

(C+l{tE)Z(l{t)=F+l{tK.

Proof Since {e l , ..., eN} is a basis of Sh, Eq. (2.5) is equivalent to

(2.8)

(2.9)

B(Uh(t/!), eJ+t/!(uh(t/!), ej)H=f(eJ + t/!g(ej ), Vj= 1, ..., N.

By setting Uh(t/!)=L~=lzi(l{t)ei in the above expression, we obtain
clearly (2.9). I

3. THE ApPROXIMATE SMOOTHING SOLUTION

The only one difficulty in using (2.5) to obtain the smoothing solution
uh(l{t) is the evaluation of g. Hence, we suggest computing an approxima­
tion of Uh (l{t) by considering a known functional g such that II g~ gil H' is
sufficiently small.

In order to do this, we assume that we have at our disposal an
approximation UE Sh to uh.

With this additional information we define

g: H-+R

v -+ g(v) = (u, v) H

and consider the problem: Find uh(l{t) E Sh such that

(3.1 )

(3.2)

Given aE Sh fixed, the unique Uh (l{t) E Sh solution of (3.2) will be caned
the approximate smoothing Galerkin solution with parameter t/!. is
remarking that uh(l{t) is obtained from the system (2.9) with kj = (ii, H

instead of kj .

The following result provides the corresponding error bounds for the
differences Uh(t/!) ~ uh(t/!) and U- Uh( l{t).
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PROPOSITION 3.1. Let UE Sh be an approximation to uh. Then, for any
I/! >0, we get

(3.3 )

and

Proof From (2.5) and (3.2) we obtain

for all v E Sh.
In particular, for v = Uh (I/!) - Uh(I/!), (3.5) is transformed in

B(uh(l/!) - Uh(I/!), Uh(l/!) - Uh(I/!)) + I/! Iluh(l/!) - uh(I/!)II~

=I/!<Ct-Uh' Uh(I/!)-Uh(I/!)H. (3.6)

By using the H-ellipticity of B and the Cauchy~Schwarz inequality in (3.6),
we deduce

and hence (3.3).
Finally, (3.4) is a consequence of (3.3), Proposition 2.1, and the triangle

inequality. I
It is clear that as a first choice of U we could utilize the usual Galerkin

solution uh. However, in this case one obtains from (3.2) that Uh(l/!) = uh,
VI/! > O. Therefore, in Section 5 we present an alternative procedure which
improves this approximation.

On the other hand, the approximate scheme (3.2) yields a modified
h-version of the finite element method in which the following sequence of
discrete problems is considered

and for j~2

B(Ul' v) = f( v), (3.7)

B(uAI/!), v)+I/!<uj(I/!), V)H

=f(v)+I/!<uj_1(1/!), V)H' (3.8)
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For a given parameter t/J>O, the set {Uit/J)}jEN satisfying (3.7)-(3.8)
constitutes the approximating sequence to the exact solution. Here, as
usual, Shj+lr;;Shj for all JEN, and {hJjEN is a decreasing sequence of
positive numbers with limit zero.

In the same way, if instead of {Sh1LE N we consider a sequence of finite
dimensional subspaces {SPjLE N in which Pj denotes an increasing degree
of polynomial approximation, then (3.7)-(3.8) can be interpreted as a
modified p-version of the finite element method (see [2,4, 10J).

4. THE SYMMETRIC CASE

In addition to the above hypotheses on the bilinear form, let us suppose
here that B is symmetric. Then, it is easily seen that the smoothing
Galerkin solution can also be characterized by the following minimization
problem

Ilu-uh(t/J)lli+t/J Ilu-uh(t/J)II~=min {llu-vlli+t/J11 u-vll;,}, (4.1)
VE Sh

where, as usual, II ·11 E is the energy norm induced by B.
In this case, we obtain the following result

PROPOSITION 4.1. For any t/J > 0, we have

(4.2)

where

Proof By setting v = uh in (4.1) we deduce clearly

that is,

Now, since B(u-uh
, v)=O, foraB VESk, we get
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and hence
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Ilu- uh(ljJ)11 ~-Ilu - uhll ~= lIuh- uh(l/!)II ~

Thus, (4.2) follows from (4.5) and (4.6). I

(4.6)

It is important to remark that in the symmetric case, the error bounds
(2.3) and (3.4) are improved by

and

respectively.
The function V in Proposition 4.1 will be called the optimality function.

Moreover, the following proposition shows the existence of an optimal
parameter.

PROPOSITION 4.2. There exists ljJ 0 > 0 so that

V(ljJo)= sup V(ljJ).
ljJE(O, +00)

Proof First of all, let us note that the Galerkin solution uh coincides
with Uh(O). So, from Proposition 2.3 we can write

where

N

uh= I ziO)ej
j=!

and
N

Uh(ljJ) = I Zj(ljJ) ej ,
j~!

(4.7)

CZ(O)=F and (C+ ljJE) Z(ljJ) =F+ ljJK.

After some computations we obtain

Z(ljJ) - Z(O) = ljJ[C+ ljJE] -![K - EZ(O)J.

On the other hand, by using (4.7) in (4.3) we have

1 N N

V(ljJ)=V; ;~! j~! (dljJ)-z;(O))(ziljJ)-Zj(O))B(e;,ej ),

(4.8)



GALERKIN METHOD WITH SMOOTHING

i.e.,

V(t/J)=~ (Z(t/J)-Z(O)f C(Z(t/J)-Z(O)).

By substituting (4.8) into the above expression we obtain

379

V(t/J) = t/J[K- EZ(O)Y[C + t/JEJ- 1C[C+ t/JE] -1[K_ EZ(O)J (4.9)

or equivalently

1 [1 J- 1

[ 1 J- 1

V(t/J)=~[K-EZ(O)Y E+~C C E+~C [K-EZ(O)].

(4010)

It follows from (4.9) and (4.10) that

lim V( t/J ) = lim V( t/J ) = O.
ljf_O ljf_ +00

Therefore, for e = V( 1), there exist positive constants J and R such that

1)

V(t/J) < V(l), vt/J E (0, J) u (R, + 00).

Hence, since V is continuous on (0, + (0), we can put

sup V(t/J) = max V(t/J)
ljfE(O. +(0) ljfE [b,R]

which completes the proof. I

5. AN ESTIMATE OF THE PROJECTION

Let us suppose that the approximation properties of the subspace Sh
characterized by the relation

(5.1 )

where C1 is a positive constant independent of h .and v, G is a function
depending only on v, usually a norm on the subspace fI of N, and N isa
positive integer (see [1; 8, Theorem 3.2.1J). Also, Vh :=Phv, Ph being the
projection already defined in (2.4).

640/61/3-9
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We denote G(v) :=C1G(v), for all vEf/.
According to (5.1) and (1.5), the Galerkin solution uh satisfies

(5.2)

and therefore

(5.3)

Here, we have assumed implicitly that u E fI.
Now, as it was remarked in Section 2, the ~pplication of the smoothing

scheme should provide better results than the usual Galerkin solution.
However, in order to apply that scheme, we need a good estimate of Uh'
Thus, in this section we give a procedure to obtain a better approximation
than uh for the projection of the solution u. In this way, we will be able to
use successfully the approximate smoothing scheme proposed in Section 3.

We assume that by using either a numerical technique or an analytic
method, we have obtained an approximation ua E il of u which is not in Sh.
It is interesting to point out that this kind of assumption arises for instance
in the multigrid context (see [6, 12, 13J) where the correction process at
one level (or subspace Sh) requires of the previously computed solution at
the next higher level. Also, we should mention that in the case of boundary
layer problems the use of asymptotic expansions constitutes a systematic
procedure to construct approximate analytical solutions (see [7, 11 J where
this approach has been used).

We now assume that there exist m ~ 1 and a positive constant C2

independent of h but that may depend on u, such that

Then, we consider the problem: Find UE Sh such that

(5.4 )

B(u, v) = f(v) + B(u~ - ua
, v), (5.5)

Here, u~ := Ph ua is the projection on Sh of the approximate solution ua
•

H is important to remark that our scheme (5.5) is similar to the asymptotic
one presented in [7J, but with a different approach. As a matter of fact,
Bar-Yoseph and Israeli propose in [7J the same variational formulation,
but instead of the projection Ph they use the interpolation operator
(cf. [8J).
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PROPOSITION 5.1. Let u be the solution of the scheme (5.5). Then, we

obtain

(5.6)

where C2 is the constant of (5.4).

Proof Let us denote ea := u - ua
• For any v in Sh we have

B(Uh - Ct, v) = B(Uh' v) - f(v) - B(u% - uG
, v).

Since B(u, v) = f( v), we can write

that is

Now, the linearity of Ph implies

It follows that

(5.7)

In particular, v = uh - Ct in (5.7) gives

(5.8)

By using the H-ellipticity and continuity of B in (5.8), we deduce

But, according to (5.1), we have

Ilea - e~11 H::;; hNG(ea
).

(5.9)

(5.10)

Finally, by combining (5.4), (5.9), and (5.10) we complete the proof. I
By comparison of (5.3) and (5.6), we see that the scheme (5.5) provides

an approximationCt for the projection of u which improves in a factor of
order hm the approximation given by the Galerkin solution.

Our solution Uh(t/!), obtained from (3.2) with ugiven by (5.5), will again
be called the approximate smoothing Galerkin solution.
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Proposition 5.1 predicts an improvement by a factor of hm of the a priori
error estimate of uh with respect to the projection Uh' However, we cannot
in general predict an improvement of the error itself. Now, the error bound
given by Proposition 5.1 is based on the existence of ua in the complement
of Sh such that it satisfies (5.4). Hence, in the particular case of the finite
element method, a useful suggestion is to combine this approach with an
adaptive refinement technique (see [3,5,14]) in which a nested sequence
of meshes is created. More precisely, one may consider ua as the finite
element solution on either the same mesh associated to Sh or a coarser
mesh, but where a higher order of approximation is used (see [2, 4]). In
this way, if the exact solution u is smooth enough then the error bound
(5.4) would be easily proved by using the interpolation theory of Sobolev
spaces (see [1; 8, Chapter 3]). Further details and some numerical
experiments will be available in [10].

As a consequence of Proposition 3.1 and Proposition 5.1, we state the
following theorem.

THEOREM 5.1. Let ua be an approximation ofu satisfying (5.4). Suppose
that the subspace Sh satisfies the approximation property (5.1). Let ube the
solution of the scheme (5.5). Then, for any l/J > 0, the approximate smoothing
Galerkin solution satisfies the error bound

(5.11 )

or equivalently

(5.12)

where C3 = 0(1).

Proof It follows from (3.4), (5.1) and (5.6). I
We remark finally that for h sufficiently small the constant term in our

estimate (5.12)

is bounded below by C3 , which is the limiting case as l/J -t + 00. We
believe, however, that a very large value of l/J is not practical numerically
because of the loss of precision which would result. Some numerical tests
on this matter and some practical criteria for choosing l/J will be presented
in [10].
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